2008年11月26日星期三

雾的形成

今天雾很大,气温很低,昨天还下过雨。
前一次下雾是收稻子的时候,家家户户烧秸秆,浓烟滚滚,一天不散,那时候刚好开始降温,每天清晨都有很大的雾。
故此总结,在两种情况下会有雾天:1,气温低而且湿气重,但湿气太重会形成雨;2,气温低而且空气混浊,浑浊的空气中有很多凝结核,即使湿气低也能形成雾。

团雾

延332省道向西走,一路蓝天,万里无云。过了周奋中桥,进入刘沟境内,面前突然一片浓雾,视距不超过5米,车子就像冲进了一堆棉花球里,甚是恐怖。穿过刘沟,进入高邮境内,雾又散了,还是一样的晴天,似乎什么都没发生过。妈的真像电影里的诡异事件。

当地人说这叫团雾。由于刘沟境内鱼塘蟹塘众多,水域面积很大,所以这一带空气中含水量特别高,很容易凝结而形成雾。

2008年11月19日星期三

2008年11月16日星期日

Squid Beaks Could Lead to Better Artificial Limbs(转帖)

Randolph E. Schmid, Associated Press

Future of Artificial Limbs?
Future of Artificial Limbs?

March 27, 2008 -- The razor-sharp beaks that giant squids use to attack whales -- and maybe even Captain Nemo's submarine -- might one day lead to improved artificial limbs for people.

That deadly beak may be a surprise to many people, and has long posed a puzzle for scientists. They wonder how a creature without any bones can operate it without hurting itself.

Now, researchers at the University of California, Santa Barbara, report in Friday's edition of the journal Science that they have an explanation

The beak, made of hard chitin and other materials, changes density gradually from the hard tip to a softer, more flexible base where it attaches to the muscle around the squid's mouth, the researchers found.

That means the tough beak can chomp away at fish for dinner, but the hard material doesn't press or rub directly against the squid's softer tissues.

Herbert Waite, a professor in the university's department of molecular, cellular developmental biology and co-author of the paper, said such graduated materials could have broad applications in biomedical materials.

"Lots of useful information could some out of this for implant materials, for example. Interfaces between soft and hard materials occur everywhere," he said in a telephone interview.

Frank Zok, professor and associate chair of the department of materials, said he had always been skeptical of whether there is any real advantage to materials that change their properties gradually from one part to another, "but the squid beak turned me into a believer."

"If we could reproduce the property gradients that we find in squid beak, it would open new possibilities for joining materials," Zok said in a statement. "For example, if you graded an adhesive to make its properties match one material on one side and the other material on the other side, you could potentially form a much more robust bond."

The researchers are learning lessons that can be applied to medical materials in the future, said Phillip B. Messersmith of the department of biomedical engineering at Northwestern University.

Messersmith, who was not part of the research team, noted that hard medical implants made of metal or ceramic are often imbedded in soft tissues.

"The lessons here from nature might be useful in transitions between devices and the tissues they are imbedded in," he said in a telephone interview.

Ali Miserez, a UCSB researcher and co-author of the paper, suggested the research could point the way to new types of medical materials.

"We could maybe imagine creating a full prosthesis that mimics the chemistry of the beak, so that it matches the elasticity of cartilage on one side and, on the other side, you could create a material which is very stiff and abrasion resistant," he said in an interview provided by Science.

Waite described the squid beak as like placing an X-Acto blade in a block of fairly firm Jell-O and then trying to use it to chop celery.

The base of the blade would damage the gelatin, but because of the change in density the base of the beak doesn't damage the squid, he pointed out. The squid solves the problem by changing the beak composition progressively, rather than abruptly, so that its tip can pierce prey without harming the squid in the process.

The researchers calculated the changes by carefully measuring the ratios of chitin -- the material in insect shells -- water and proteins in the beaks of Humboldt squid, showing gradual changes from tip to base.

Waite said it was the first time this had been measured. He said he was surprised that the main difference in density resulted from the amount of water included in each part of the beak.

Most people probably know squid best as fried calamari -- the tasty starters popular in many restaurants. But the researchers noted that these are animals that deserve respect.

"Squids can be aggressive, whimsical, suddenly mean, and they are always hungry," Waite said. "You wouldn't want to be diving next to one. A dozen of them could eat you, or really hurt you a lot."

And they are very fast, swimming by a sort of jet propulsion.

The research was funded by the National Institutes of Health, National Science Foundation, NASA and the Swiss National Science Foundation.